Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sengur, Abdulkadir" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A Lung Sound Classification System Based on Data Augmenting Using ELM-Wavelet-AE
    (2022) ARI, Berna; Alçin, Ömer Faruk; Sengur, Abdulkadir
    The method is of great importance in systems that include machine learning and classification steps. As a result, academics are constantly working to improve the process. However, the data pertaining to the methodology's performance is equally as valuable as the methodology's creation. While the data is utilized to show the result of the modeling process, it is critical to consider the proper labeling of the data, the technique of acquisition, and the volume. Obtaining data in certain sectors, particularly medical fields, can be costly and time consuming. Thus, data augmenting via classical and synthetic methods has recently gained popularity. Our study uses synthetic data augmentation since it is newer, more efficient, and produces the desired effect. Our study's goal is to classify a data collection of lung sounds into four groups using data augmenting. Obtaining and standardizing the wavelet scatter transformation of each cycle of lung sounds, splitting the transformed data into test and training, augmenting and classifying the training data. In the augmenting stage, we utilized ELM-AE, then ELM-W-AE, with six wavelet functions (Gaussian, Morlet, Mexican, Shannon, Meyer, Ggw) added. The SVM and EBT classifiers improved performance by 4% and 3% in ELM-W-AE compared to the original structure.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Accurate detection of autism using Douglas-Peucker algorithm, sparse coding based feature mapping and convolutional neural network techniques with EEG signals
    (Elsevier B.V. All, 2022) Arı, Berna; Sobahi, Nebras; Alçin, Ömer Faruk; Sengur, Abdulkadir; Acharya, U.Rajendra
    Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application.

| Malatya Turgut Özal Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Malatya Turgut Özal Üniversitesi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim